Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(4): 1273-1289, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38536408

RESUMO

As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Toward addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC-protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including noninvasive monitoring of physiological signals for a range of diagnostic applications.


Assuntos
Técnicas Biossensoriais , Eritrócitos , Ligantes , Eritrócitos/metabolismo , Proteínas de Membrana/metabolismo
2.
GEN Biotechnol ; 2(3): 228-246, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37363412

RESUMO

Off-the shelf immune cell therapies are potentially curative and may offer cost and manufacturing advantages over autologous products, but further development is needed. The NK92 cell line has a natural killer-like phenotype, has efficacy in cancer clinical trials, and is safe after irradiation. However, NK92 cells lose activity post-injection, limiting efficacy. This may be addressed by engineering NK92 cells to express stimulatory factors, and comparative analysis is needed. Thus, we systematically explored the expression of synthetic cytokines for enhancing NK92 cell production and performance. All synthetic cytokines evaluated (membrane-bound IL2 and IL15, and engineered versions of Neoleukin-2/15, IL15, IL12, and decoy resistant IL18) enhanced NK92 cell cytotoxicity. Engineered cells were preferentially expanded by expressing membrane-bound but not soluble synthetic cytokines, without compromising the radiosensitivity required for safety. Some membrane-bound cytokines conferred cell-contact independent paracrine activity, partly attributable to extracellular vesicles. Finally, we characterized interactions within consortia of differently engineered NK92 cells.

3.
bioRxiv ; 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38168174

RESUMO

As the use of engineered cell therapies expands from pioneering efforts in cancer immunotherapy to other applications, an attractive but less explored approach is the use of engineered red blood cells (RBCs). Compared to other cells, RBCs have a very long circulation time and reside in the blood compartment, so they could be ideally suited for applications as sentinel cells that enable in situ sensing and diagnostics. However, we largely lack tools for converting RBCs into biosensors. A unique challenge is that RBCs remodel their membranes during maturation, shedding many membrane components, suggesting that an RBC-specific approach may be needed. Towards addressing this need, here we develop a biosensing architecture built on RBC membrane proteins that are retained through erythropoiesis. This biosensor employs a mechanism in which extracellular ligand binding is transduced into intracellular reconstitution of a split output protein (including either a fluorophore or an enzyme). By comparatively evaluating a range of biosensor architectures, linker types, scaffold choices, and output signals, we identify biosensor designs and design features that confer substantial ligand-induced signal in vitro. Finally, we demonstrate that erythroid precursor cells engineered with our RBC protein biosensors function in vivo. This study establishes a foundation for developing RBC-based biosensors that could ultimately address unmet needs including non-invasive monitoring of physiological signals for a range of diagnostic applications.

4.
Front Mol Biosci ; 9: 849363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903149

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy shows promise for treating liquid cancers and increasingly for solid tumors as well. While potential design strategies exist to address translational challenges, including the lack of unique tumor antigens and the presence of an immunosuppressive tumor microenvironment, testing all possible design choices in vitro and in vivo is prohibitively expensive, time consuming, and laborious. To address this gap, we extended the modeling framework ARCADE (Agent-based Representation of Cells And Dynamic Environments) to include CAR T-cell agents (CAR T-cell ARCADE, or CARCADE). We conducted in silico experiments to investigate how clinically relevant design choices and inherent tumor features-CAR T-cell dose, CD4+:CD8+ CAR T-cell ratio, CAR-antigen affinity, cancer and healthy cell antigen expression-individually and collectively impact treatment outcomes. Our analysis revealed that tuning CAR affinity modulates IL-2 production by balancing CAR T-cell proliferation and effector function. It also identified a novel multi-feature tuned treatment strategy for balancing selectivity and efficacy and provided insights into how spatial effects can impact relative treatment performance in different contexts. CARCADE facilitates deeper biological understanding of treatment design and could ultimately enable identification of promising treatment strategies to accelerate solid tumor CAR T-cell design-build-test cycles.

5.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786712

RESUMO

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Assuntos
Congressos como Assunto/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Relatório de Pesquisa , Biologia Sintética/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Células Matadoras Naturais/imunologia , Aprendizado de Máquina/tendências , Biologia Sintética/métodos , Linfócitos T/imunologia
6.
Nat Commun ; 11(1): 878, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054845

RESUMO

Macrophage-initiated inflammation is tightly regulated to eliminate threats such as infections while suppressing harmful immune activation. However, individual cells' signaling responses to pro-inflammatory cues are heterogeneous, with subpopulations emerging with high or low activation states. Here, we use single-cell tracking and dynamical modeling to develop and validate a revised model for lipopolysaccharide (LPS)-induced macrophage activation that invokes a mechanism we term quorum licensing. The results show that bimodal phenotypic partitioning of macrophages is primed during the resting state, dependent on cumulative history of cell density, predicted by extrinsic noise in transcription factor expression, and independent of canonical LPS-induced intercellular feedback in the tumor necrosis factor (TNF) response. Our analysis shows how this density-dependent coupling produces a nonlinear effect on collective TNF production. We speculate that by linking macrophage density to activation, this mechanism could amplify local responses to threats and prevent false alarms.


Assuntos
Comunicação Celular/imunologia , Inflamação/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Modelos Imunológicos , Animais , Fibroblastos , Citometria de Fluxo , Microscopia Intravital , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Microscopia Confocal , Cultura Primária de Células , Células RAW 264.7 , Transdução de Sinais/imunologia , Análise de Célula Única , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
J Chem Theory Comput ; 13(11): 5709-5720, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29023116

RESUMO

To enhance the sampling efficiency of our computational peptide-design algorithm in conformational space, the concerted rotation (CONROT) technique is extended to enable larger conformational perturbations of peptide chains. This allows us to make relatively large peptide conformation changes during the process of designing peptide sequences to bind with high affinity to a specific target. Searches conducted using the new algorithm identified six potential λ N(2-22) peptide variants, called B1-B6, which bind to boxB RNA with high affinity. The results of explicit-solvent atomistic molecular dynamics simulations revealed that four of the evolved peptides, viz. B1, B2, B3, and B5, are excellent candidate binders to the target boxB RNA as they have lower binding free energies than the original λ N(2-22) peptide. Three of the four peptides, B2, B3, and B5, result from searches that contain both sequence and conformation changes, indicating that adding backbone motif changes to the peptide-design algorithm improves its performance considerably.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Algoritmos
9.
Adv Genet ; 98: 155-175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28942793

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed particles that are secreted by nearly all cells and play an important role in intercellular communication by transporting protein and nucleic acids between cells. EV-mediated processes shape phenomena as diverse as cancer progression, immune function, and wound healing. The natural role of EVs in encapsulating and delivering cargo to modify cellular function highlights the potential to use these particles as therapeutic delivery vehicles. In this chapter, we describe emerging strategies for EV engineering and consider how different approaches to EV production, purification, and design may impact the efficacy of EV-based therapeutics.


Assuntos
Portadores de Fármacos , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos/genética , Animais , Transporte Biológico , Fusão Celular , DNA/genética , Exossomos/genética , Vesículas Extracelulares/genética , Humanos , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
10.
Tissue Eng Part A ; 23(21-22): 1274-1282, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28586292

RESUMO

Extracellular vesicles (EVs) are nanometer-scale particles that are secreted by cells and mediate intercellular communication by transferring biomolecules between cells. Harnessing this mechanism for therapeutic biomolecule delivery represents a promising frontier for regenerative medicine and other clinical applications. One challenge to realizing this goal is that to date, our understanding of which factors affect EV uptake by recipient cells remains incomplete. In this study, we systematically investigated such delivery questions in the context of breast cancer cells, which are one of the most well-studied cell types with respect to EV delivery and therefore comprise a facile model system for this investigation. By displaying various targeting peptides on the EV surface, we observed that although displaying GE11 on EVs modestly increased uptake by MCF-7 cells, neuropeptide Y (NPY) display had no effect on uptake by the same cells. In contrast, neurotensin (NTS) and urokinase plasminogen activator (uPA) display reduced EV uptake by MDA-MB-231 cells. Interestingly, EV uptake rate did not depend on the source of the EVs; breast cancer cells demonstrated no increase in uptake on administration of breast cancer-derived EVs in comparison to HEK293FT-derived EVs. Moreover, EV uptake was greatly enhanced by delivery in the presence of polybrene and spinoculation, suggesting that maximal EV uptake rates are much greater than those observed under basal conditions in cell culture. By investigating how the cell's environment might provide cues that impact EV uptake, we also observed that culturing cells on soft matrices significantly enhanced EV uptake, compared to culturing on stiff tissue culture polystyrene. Each of these observations provides insights into the factors impacting EV uptake by breast cancer cells, while also providing a basis of comparison for systematically evaluating and perhaps enhancing EV uptake by various cell types.


Assuntos
Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Feminino , Células HEK293 , Brometo de Hexadimetrina/farmacologia , Humanos , Biblioteca de Peptídeos , Receptores de Superfície Celular/metabolismo , Regulação para Cima/efeitos dos fármacos
11.
Curr Opin Biomed Eng ; 4: 127-133, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29450405

RESUMO

The engineering of cells as programmable devices has enabled therapeutic strategies that could not otherwise be achieved. Such strategies include recapitulating and enhancing native cellular functions and composing novel functions. These novel functions may be composed using both natural and engineered biological components, with the latter exemplified by the development of synthetic receptor and signal transduction systems. Recent advances in implementing these approaches include the treatment of cancer, where the most clinical progress has been made to date, and the treatment of diabetes. Principles for engineering cell-based therapies that are safe and effective are increasingly needed and beginning to emerge, and will be essential in the development of this new class of therapeutics.

12.
Nat Chem Biol ; 13(2): 202-209, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27941759

RESUMO

Engineered cell-based therapies comprise a promising emerging strategy for treating diverse diseases. Realizing this promise requires new tools for engineering cells to sense and respond to soluble extracellular factors, which provide information about both physiological state and the local environment. Here, we report such a biosensor engineering strategy, leveraging a self-contained receptor-signal transduction system termed modular extracellular sensor architecture (MESA). We developed MESA receptors that enable cells to sense vascular endothelial growth factor (VEGF) and, in response, secrete interleukin 2 (IL-2). By implementing these receptors in human T cells, we created a customized function not observed in nature-an immune cell that responds to a normally immunosuppressive cue (VEGF) by producing an immunostimulatory factor (IL-2). Because this platform utilizes modular, engineerable domains for ligand binding (antibodies) and output (programmable transcription factors based upon Cas9), this approach may be readily extended to novel inputs and outputs. This generalizable approach for rewiring cellular functions could enable both translational applications and fundamental biological research.


Assuntos
Anticorpos/imunologia , Técnicas Biossensoriais , Linfócitos T/imunologia , Fatores de Transcrição/imunologia , Humanos , Interleucina-2/biossíntese , Interleucina-2/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
13.
Innate Immun ; 22(8): 647-657, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27670945

RESUMO

Macrophages are ubiquitous innate immune cells that play a central role in health and disease by adopting distinct phenotypes, which are broadly divided into classical inflammatory responses and alternative responses that promote immune suppression and wound healing. Although macrophages are attractive therapeutic targets, incomplete understanding of this functional choice limits clinical manipulation. While individual stimuli, pathways, and genes involved in macrophage functional responses have been identified, how macrophages evaluate complex in vivo milieus comprising multiple divergent stimuli remains poorly understood. Here, we used combinations of "incoherent" stimuli-those that individually promote distinct macrophage phenotypes-to elucidate how the immunosuppressive, IL-10-driven macrophage phenotype is induced, maintained, and modulated under such combinatorial stimuli. The IL-10-induced immunosuppressive phenotype was largely insensitive to co-administered IL-12, which has been reported to modulate macrophage phenotype, but maintaining the immunosuppressive phenotype required sustained exposure to IL-10. Our data implicate the intracellular protein, BCL3, as a key mediator of the IL-10-driven phenotype. Notably, co-administration of IFN-γ disrupted an IL-10-mediated positive feedback loop that may reinforce the immunosuppressive phenotype. This novel combinatorial perturbation approach thus generated new insights into macrophage decision making and local immune network function.


Assuntos
Diferenciação Celular , Macrófagos/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteína 3 do Linfoma de Células B , Retroalimentação Fisiológica , Imunidade Inata , Terapia de Imunossupressão , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Células RAW 264.7
14.
J Comput Chem ; 37(27): 2423-35, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27487990

RESUMO

Our previously developed peptide-design algorithm was improved by adding an energy minimization strategy which allows the amino acid sidechains to move in a broad configuration space during sequence evolution. In this work, the new algorithm was used to generate a library of 21-mer peptides which could substitute for λ N peptide in binding to boxB RNA. Six potential peptides were obtained from the algorithm, all of which exhibited good binding capability with boxB RNA. Atomistic molecular dynamics simulations were then conducted to examine the ability of the λ N peptide and three best evolved peptides, viz. Pept01, Pept26, and Pept28, to bind to boxB RNA. Simulation results demonstrated that our evolved peptides are better at binding to boxB RNA than the λ N peptide. Sequence searches using the old (without energy minimization strategy) and new (with energy minimization strategy) algorithms confirm that the new algorithm is more effective at finding good RNA-binding peptides than the old algorithm. © 2016 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Peptídeos/química , RNA Viral/química , Proteínas de Ligação a RNA/química , Biblioteca de Peptídeos
15.
J Extracell Vesicles ; 5: 31027, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27189348

RESUMO

Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) - gesicles - we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems.

16.
Biomaterials ; 80: 11-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26701143

RESUMO

Biomaterial scaffolds are central to many regenerative strategies as they create a space for infiltration of host tissue and provide a platform to deliver growth factors and progenitor cells. However, biomaterial implantation results in an unavoidable inflammatory response, which can impair tissue regeneration and promote loss or dysfunction of transplanted cells. We investigated localized TGF-ß1 delivery to modulate this immunological environment around scaffolds and transplanted cells. TGF-ß1 was delivered from layered scaffolds, with protein entrapped within an inner layer and outer layers designed for cell seeding and host tissue integration. Scaffolds were implanted into the epididymal fat pad, a site frequently used for cell transplantation. Expression of cytokines TNF-α, IL-12, and MCP-1 were decreased by at least 40% for scaffolds releasing TGF-ß1 relative to control scaffolds. This decrease in inflammatory cytokine production corresponded to a 60% decrease in leukocyte infiltration. Transplantation of islets into diabetic mice on TGF-ß1 scaffolds significantly improved the ability of syngeneic islets to control blood glucose levels within the first week of transplant and delayed rejection of allogeneic islets. Together, these studies emphasize the ability of localized TGF-ß1 delivery to modulate the immune response to biomaterial implants and enhance cell function in cell-based therapies.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas/métodos , Alicerces Teciduais/química , Fator de Crescimento Transformador beta1/administração & dosagem , Fator de Crescimento Transformador beta1/uso terapêutico , Animais , Células Cultivadas , Quimiocina CCL2/imunologia , Diabetes Mellitus Experimental/imunologia , Sistemas de Liberação de Medicamentos/métodos , Imunomodulação/efeitos dos fármacos , Interleucina-12/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Porosidade , Fator de Necrose Tumoral alfa/imunologia
17.
PLoS Comput Biol ; 11(4): e1004181, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25905470

RESUMO

Tumor growth involves a dynamic interplay between cancer cells and host cells, which collectively form a tumor microenvironmental network that either suppresses or promotes tumor growth under different conditions. The transition from tumor suppression to tumor promotion is mediated by a tumor-induced shift in the local immune state, and despite the clinical challenge this shift poses, little is known about how such dysfunctional immune states are initiated. Clinical and experimental observations have indicated that differences in both the composition and spatial distribution of different cell types and/or signaling molecules within the tumor microenvironment can strongly impact tumor pathogenesis and ultimately patient prognosis. How such "functional" and "spatial" heterogeneities confer such effects, however, is not known. To investigate these phenomena at a level currently inaccessible by direct observation, we developed a computational model of a nascent metastatic tumor capturing salient features of known tumor-immune interactions that faithfully recapitulates key features of existing experimental observations. Surprisingly, over a wide range of model formulations, we observed that heterogeneity in both spatial organization and cell phenotype drove the emergence of immunosuppressive network states. We determined that this observation is general and robust to parameter choice by developing a systems-level sensitivity analysis technique, and we extended this analysis to generate other parameter-independent, experimentally testable hypotheses. Lastly, we leveraged this model as an in silico test bed to evaluate potential strategies for engineering cell-based therapies to overcome tumor associated immune dysfunction and thereby identified modes of immune modulation predicted to be most effective. Collectively, this work establishes a new integrated framework for investigating and modulating tumor-immune networks and provides insights into how such interactions may shape early stages of tumor formation.


Assuntos
Modelos Imunológicos , Neoplasias/imunologia , Algoritmos , Terapia Baseada em Transplante de Células e Tecidos , Biologia Computacional , Simulação por Computador , Citocinas/imunologia , Humanos , Macrófagos/imunologia , Neoplasias/patologia , Neoplasias/terapia
18.
J Biol Chem ; 290(13): 8166-72, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25657008

RESUMO

Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics.


Assuntos
Exossomos/metabolismo , Endossomos/metabolismo , Glicosilação , Células HEK293 , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/biossíntese , Proteína 2 de Membrana Associada ao Lisossomo/química , Proteína 2 de Membrana Associada ao Lisossomo/genética , Peptídeos/metabolismo , Engenharia de Proteínas , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transporte Proteico , Proteólise , Proteínas Recombinantes de Fusão/metabolismo
19.
J Biol Chem ; 290(14): 8764-77, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25694428

RESUMO

Toll-like receptors (TLRs) mediate immune recognition of both microbial infections and tissue damage. Aberrant TLR signaling promotes disease; thus, understanding the regulation of TLR signaling is of medical relevance. Although downstream mediators of TLR signaling have been identified, the detailed mechanism by which ligand binding-mediated dimerization induces downstream signaling remains poorly understood. Here, we investigate this question for TLR4, which mediates responsiveness to bacterial LPS and drives inflammatory disease. TLR4 exhibits structural and functional features that are unique among TLRs, including responsiveness to a wide variety of ligands. However, the connection between these structural features and the regulation of signaling is not clear. Here, we investigated how the unique intracellular structures of TLR4 contribute to receptor signaling. Key conclusions include the following. 1) The unique intracellular linker of TLR4 is important for achieving LPS-inducible signaling via Toll/IL-1 receptor (TIR) domain-containing adapter-inducing interferon-ß (TRIF) but less so for signaling via myeloid differentiation primary response 88 (MyD88). 2) Membrane-bound TLR4 TIR domains were sufficient to induce signaling. However, introducing long, flexible intracellular linkers neither induced constitutive signaling nor ablated LPS-inducible signaling. Thus, the initiation of TLR4 signaling is regulated by a mechanism that does not require tight geometric constraints. Together, these observations necessitate refining the model of TLR4 signal initiation. We hypothesize that TLR4 may interact with an inhibitory partner in the absence of ligand, via both TIR and extracellular domains of TLR4. In this speculative model, ligand binding induces dissociation of the inhibitory partner, triggering spontaneous, switchlike TIR domain homodimerization to initiate downstream signaling.


Assuntos
Técnicas Biossensoriais , Receptor 4 Toll-Like/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Transdução de Sinais , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
20.
Annu Rev Pharmacol Toxicol ; 55: 439-464, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25292428

RESUMO

This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury.


Assuntos
Micropartículas Derivadas de Células/metabolismo , DNA/administração & dosagem , Portadores de Fármacos , Desenho de Fármacos , Exossomos/metabolismo , Técnicas de Transferência de Genes , Preparações Farmacêuticas/administração & dosagem , RNA/administração & dosagem , Vacinas/administração & dosagem , Animais , Micropartículas Derivadas de Células/imunologia , Química Farmacêutica , DNA/metabolismo , Exossomos/imunologia , Humanos , Nanopartículas , Nanotecnologia , Preparações Farmacêuticas/metabolismo , RNA/metabolismo , Distribuição Tecidual , Vacinas/imunologia , Vacinas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA